
Jijnasa Patil et al Int. Journal of Engineering Research and Applications                      www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6( Version 6), July 2014, pp.72-77 

 www.ijera.com                                                                                                                                72 | P a g e  

 

 

 

Comparative Study of Mutual Exclusion Algorithms in 

Distributed Systems 
 

Jijnasa Patil
1
, Radhika Naik

2
 

Department of Computer Engineering and Information Technology Veermata Jijabai Technological Institute 

Matunga, Mumbai, India 

 

Abstract 
Mutual Exclusion is an important phenomenon in distributed systems. In this paper, we analyze and compare 

various mutual exclusion algorithms in distributed systems. In permission based mutual exclusion process waits 

for permission from other processes to enter into a critical section. In token based mutual exclusion, a special 

message called token is passed over the system and process holding the token can enter into the critical section. 

We present a comparative study of quorum based, token ring token asking and multiple token algorithms for 

mutual exclusion in distributed systems. 

Index Terms—distributed mutual exclusion, group mutual exclusion, mutual exclusion, 

 

I. INTRODUCTION 
In distributed systems multiple processes run 

concurrently and collaboratively. There are a few 

numbers of resources as compared to that of 

processes. So, these resources need to be shared 

among the processes. A situation may occur quite 

often that multiple processes want to access the same 

resource simultaneously. This may cause 

inconsistency. To prevent this some mechanism must 

be present to grant access of the shared resource to 

the processes in mutually exclusive manner. In this 

paper we study the various mutual exclusion 

algorithms. In distributed systems, mainly there are 

two types of algorithms for mutual exclusion, viz., 

Token based and permission based. In the case of 

former, a message, called token, is passed between 

the processes. The tokens are available one per 

shared resource.  The process which has the token is 

allowed to access the shared resource. When process 

finishes its critical section, it passes the token to the 

next process. While in the latter case, a process which 

wants to access the shared resource requests other 

processes’ permission. There are many ways to grant 

the permission. One of the methods is quorum based 

mutual exclusion algorithms. In quorum based 

mutual exclusion algorithms a process chooses its 

quorum and waits for each quorum member to grant 

its request to access the shared resource. 

A group mutual exclusion is a special case of 

mutual exclusion. In this, every shared resource is 

associated with a type. All the processes which want 

the same type of shared resource can run concurrently, 

while processes wanting to access different type of 

shared resource should run in mutually exclusive 

manner. 

In this paper we have a look at some of the 

distributed mutual exclusion algorithms such as  

 

quorum based token ring token asking and multiple 

token algorithms. 

 

II. RELATED WORK 
There are many ways by which mutual exclusion 

can be achieved. A centralized approach to mutual 

exclusion [1] mimics single processor system. One of 

the processes in the system is elected as coordinator. 

Other processes request for the resource, the 

coordinator grants or queues the request. When 

request is granted by the coordinator process starts 

using the resource and when done it releases the 

resource. Although it is very easy to implement has 

very less message complexity, the dead coordinator 

cannot be detected. And the central server becomes 

the bottleneck.  A distributed approach is followed by 

Ricart Agrawala algorithm [1], [7] in which a process 

which wants the shared resource sends request to all 

the processes and waits for ok reply from every 

process. It accesses the resource when it receives ok 

message from all other processes.  

 

III. MUTUAL EXCLUSION IN DISTRIBUTED 

SYSTEMS 
In distributed systems multiple processes run 

concurrently and collaboratively. There are a few 

numbers of resources as compared to that of 

processes. So, these resources need to be shared 

among the processes. A situation may occur quite 

often that multiple processes want to access the same 

resource simultaneously. This may cause 

inconsistency. To prevent this some mechanism must 

be present to grant access of the shared resource to the 

processes in mutually exclusive manner. In this paper 

we study the various mutual exclusion algorithms. In 

distributed systems, mainly there are two types of 

algorithms for mutual exclusion, viz., Token based 

RESEARCH ARTICLE                         OPEN ACCESS 



Jijnasa Patil et al Int. Journal of Engineering Research and Applications                      www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6( Version 6), July 2014, pp.72-77 

 www.ijera.com                                                                                                                                73 | P a g e  

and permission based. In the case of former, a 

message, called token, is passed between the 

processes. The tokens are available one per shared 

resource.  The process which has the token is allowed 

to access the shared resource. When process finishes 

its critical section, it passes the token to the next 

process. While in the latter case, a process which 

wants to access the shared resource requests other 

processes’ permission. There are many ways to grant 

the permission. One of the methods is quorum based 

mutual exclusion algorithms. In quorum based mutual 

exclusion algorithms a process chooses its quorum 

and waits for each quorum member to grant its request 

to access the shared resource. 

A group mutual exclusion is a special case of 

mutual exclusion. In this, every shared resource is 

associated with a type. All the processes which want 

the same type of shared resource can run concurrently, 

while processes wanting to access different type of 

shared resource should run in mutually exclusive 

manner. 

 

A. Quorum based Distributed Mutual Exclusion 

Algorithm 

A quorum is a subset of nodes or processes. 

Although nodes and processes are identical, following 

the convention in, we use the term node specifically 

when referring to the role of a process as a quorum 

member. A quorum system C, also referred to as a 

coterie, for a (traditional) mutual exclusion is a set of 

quorums satisfying the following properties: 

 
If a process enters its critical section only after it 

has successfully locked all nodes in some quorum, 

then the intersection property ensures that no two 

processes can execute their critical sections 

concurrently.  The minimality property ensures that 

no process is required to lock more nodes than 

necessary to achieve mutual exclusion. 

Maekawa’s algorithm [2], [3], [6] implements 

mutual exclusion by using a coterie. Lamport’s logical 

clock is used to assign a time stamp to every request 

for a critical section. A request with a smaller time 

stamp has a higher priority than a request with a larger 

time stamp (ties are broken using process identifiers).  

 

Maekawa’s algorithm works as follows: 

 When a process wishes to enter a critical section, 

it selects a quorum and sends a REQUEST 

message to all the quorum members. It enters the 

critical section once it has successfully locked all 

its quorum members. On leaving the critical 

section, the process unlocks all its quorum 

members by sending a RELEASED message. 

 A node, on receiving a REQUEST message, 

checks to see whether it has already been locked 

by some other process. If not, it grants the lock to 

the requesting process by sending a LOCKED 

message to it. Otherwise, the node uses time 

stamps to determine whether the process 

currently holding a lock on it (hereafter referred 

to as the locking process) should be preempted. If 

the node decides not to preempt the locking 

process, it sends a FAILED message to the 

requesting process. Otherwise, it sends INQUIRE 

message to the locking process.  

 A process, on receiving an INQUIRE message 

from a quorum member, unlocks the member by 

sending a RELINQUISH message as and when it 

realizes that it will not be able to successfully 

lock all its quorum members. This is ascertained 

when a FAILED message is received from one of 

the quorum members. 

  A node, on receiving a RELINQUISH or 

RELEASED message, grants the lock to the 

process whose request has the highest priority 

among all the pending requests, if any. 

Maekawa proved that the message complexity of 

the above algorithm is O(n), where q is the maximum 

size of a quorum. Further, its synchronization delay 

and waiting time are both two message hops. The 

synchronization delay is two message hops because 

once a process leaves the critical section, another 

process can enter the critical section after all the 

quorum members of the former process have received 

a RELEASED message and the latter process has 

received a LOCKED message from its quorum 

members. 

 

B. A Surrogate-quorum-based Algorithm 

The group mutual exclusion problem (GME) [2] 

was first proposed in as an extension to the traditional 

mutual exclusion problem. In this problem, every 

request for a critical section is associated with a type 

or a group. An algorithm for group mutual exclusion 

should satisfy the following properties: 

Group mutual exclusion is at any time, no two 

processes, which have requested critical sections 

belonging to different groups, are in their critical 

sections simultaneously. Starvation freedom is a 

situation when a process wishing to enter critical 

section succeeds eventually. 

So, an algorithm [2] solving traditional mutual 

exclusion problem can solve this group mutual 

exclusion problem indeed, but they are not optimal for 

this problem. As they consider all critical section s as 

same. They require that all critical sections must be 

executed in mutually exclusive manner.  

 A node, when sending a LOCKED message to a 

process, piggybacks all requests currently in its 

queue, which are compatible with the request by 

the locking process. 

 A process, on receiving a LOCKED message, 

stores all the requests that were piggybacked on 

the message. Once it has successfully locked all 



Jijnasa Patil et al Int. Journal of Engineering Research and Applications                      www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6( Version 6), July 2014, pp.72-77 

 www.ijera.com                                                                                                                                74 | P a g e  

its quorum members, it sends an INVITE 

message to processes that made these requests.  

  A process, on receiving an INVITE message for 

its current request, sends a CANCEL message to 

all its quorum members. It then enters the forum. 

 A node, on receiving a CANCEL message from a 

process, removes its request from the queue, if it 

exists. 

 Once a follower exits the forum, it sends a 

LEAVE message to its leader. 

  A leader maintains the lock on its quorum 

members until it has received a LEAVE message 

from all its followers and has itself left the forum. 

It then sends a RELEASED message to its 

quorum members. 

 A node, on receiving a RELEASED message 

from a process, removes all those requests from 

its queue that it piggybacked on the last 

LOCKED message that it sent. 

 If a leader leaves its forum and has not received a 

LEAVE message from all its followers, then the 

leader is called a surrogate-leader. 

 

C. Ricart Agrawala Algorithm 

This algorithm [1], [3], [7] is an efficient way of 

achieving mutual exclusion in distributed systems. 

When a process want to access the shared resource it  

sends a message containing a unique identifier, name 

of the resource and timestamp. When a process 

receives a request message it compares timestamp and 

the earliest wins. The algorithm is illustrated as 

below: 

 Process wants to enter critical section: 

Compose message containing: 

  Identifier (machine ID, process ID) 

  Name of resource 

  Timestamp (totally-ordered Lamport) 

Send request to all processes in group 

Wait until everyone gives permission 

Enter critical section / use resource 

 When process receives request: 

If receiver not interested: 

  Send OK to sender 

If receiver is in critical section 

  Do not reply; add request to queue 

If receiver just sent a request as well: 

  Compare timestamps: received & sent 

messages 

  Earliest wins 

  If receiver is loser, send OK  

  If receiver is winner, do not reply, queue 

 When done with critical section 

Send OK to all queued requests 

 

D. Token Based Distributed Mutual Exclusion 

Algorithm 

In Token based mutually exclusive systems 

multiple processes are in some logical structure. A 

message called token is circulated. Process having the 

token can access the shared resource. There are two 

types of token based systems[3], 1) Perpetual mobility 

and 2) token-asking method. In the perpetual mobility, 

the token travels from one process to another to give 

them the right to enter their critical sections 

exclusively, without paying attention to whether that 

process needs the token or not. Therefore, additional 

processing and communication are imposed on the 

system as overhead, especially in the light load 

situations in which very few numbers of processes 

attempting to invoke their critical sections, 

simultaneously. But the perpetual mobility of the 

token is very effective on the high load situations. 

Token-ring algorithm is one of these algorithms.  

 

E. Token Ring Algorithm 

In Token Ring Systems [1], [3] nodes are 

logically ordered in a ring fashion. A special message 

called token is passed between the nodes one by one. 

This is shown in Fig. 1. When a process holding the 

token completes its critical section it passes the token 

to the next process in the ring and so on. 

 
Fig. 1 Token Ring Algorithm 

 

A token ring algorithm is illustrated below: 

 Initialization 

Process 0 gets token for resource R 

 Token circulates around ring 

From Pi to P(i+1)mod N 

 When process acquires token 

Checks to see if it needs to enter critical 

section 

 If no, send ring to neighbor 

 If yes, access resource 

 Hold token until done 

Some of the advantages of the token ring 

algorithm are 1) It is very simple to understand and 



Jijnasa Patil et al Int. Journal of Engineering Research and Applications                      www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6( Version 6), July 2014, pp.72-77 

 www.ijera.com                                                                                                                                75 | P a g e  

implement. 2) As all the processes wanting to enter 

into critical section get equal chance, no processes 

will starve. Along with the advantages there are some 

disadvantages also: 1) since there are N-1 messages 

for a token communication overhead may be 

caused.2) If the token is lost, it is very difficult to 

regenerate it. 3) If a process holding the token crashes 

then the token needs to be regenerated.4) this system 

is not scalable. If number of processes in the system 

increases, the waiting time per process will also 

increase. 

 

F. Information based token passing algorithm 

In information based token asking method [3], 

the processes are structured in a wrap around 2- 

dimensional d x d array of size N2 where N is the 

number of processes N=d2. There may be three type 

of processes viz. 1) Token holding process- this is 

only one process, 2) informed process- processes in 

the row of token holding process, 3) token requesting 

process- sends request to the process below it. 

 
Fig. 2 Information based- based token asking 

algorithm 

 

By info-based it is meant that from total nodes in 

a distributed system, some nodes know the current 

location of the token and forward CS entry requests to 

the token-holding node, directly. Therefore, in our 

info-based algorithm, CS entering requests are led to 

the token-holding process directly through informed-

nodes and the token is also sent from the token-

holding process to the requesting process directly. As 

a result, knowing that some nodes have requests to 

enter their critical sections and the current location of 

the token are very important concepts in our info-

based algorithm. 

We assume that in the beginning of the algorithm, 

Pk is the token-holding process (which is in row a and 

column b of the wrap around topology) and it is 

executing its CS. To simplify, assume there is only 

one non-token-holding process, say process Pi in row 

m and column n, which is attempting to invoke its CS. 

The given position of these two nodes and messages 

exchanged between them in the following scenario is 

shown in Fig. 2. The request message (ReqMsg) of 

process Pi for entering its CS is sent to the node below 

Pi, suppose it is process Pj. If process Pj doesn’t know 

who the token-holding node is, it sends ReqMsg of 

process Pi to the next node below. This action 

continues until ReqMsg of process Pi eventually 

arrives to one of the informed-nodes, a node in row a 

that knows process Pk is the token-holding node, e.g. 

process Ph in Fig. 2. Now, ReqMsg of process Pi is 

sent directly to process Pk. Therefore, up to this step 

of the algorithm, the request message of process Pi for 

entering its CS has arrived to the token-holding node. 

Process Pk, after releasing its CS, sends the token 

directly to process Pi. Process Pi, after receiving the 

token, informs all the nodes in its row that Pi is the 

tokenholding process by an InfoMsg message. Hence, 

all nodes in row m know that Pi is the token-holding 

process. In this case, process Pi through sending 

RelMsg message to process Pk, asks process Pk to 

inform all nodes in Pk’s row that Pk does not hold the 

token anymore. To do this, process Pk after receiving 

the RelMsg message, multicasts RowRel messages to 

all nodes in its row, except itself. Process Pk waits 

until receiving Ack messages from all these nodes. By 

arriving each Ack message from any process (say 

process Pf), process Pk knows for certain that it has 

received all ReqMsgs sent through process Pf already. 

When process Pk receives the Ack messages from all 

these nodes (i.e. all nodes in Pk’s row know that Pk is 

a nontoken- holding process anymore), it sends 

Finished message to process Pi. Therefore, the 

responsibility of process Pk in managing the token 

and CS entering requests is finished. Process Pi after 

receiving the Finished message, executes its CS and 

after completing its CS becomes the manager of the 

token with the power to decide whether remain the 

idle token holding process or send the token to 

another node. 

This algorithm runs in worst case in terms of 

message in the case of heavy load. When all the nodes 

attempt to enter CS, there will not be any downward 

forwarding of request. Table 1 shows the comparison 

of token ring and info-based token asking algorithms 

 

G. Multiple Tokens Algorithm 

It is based on token ring algorithm. Every process 

is associated with a unique identifier. There are 

multiple resources to be used in mutual exclusive 

manner by the processes. Multiple tokens are 

circulated in the system simultaneously. A process 

which wants to enter into CS generates a token and 

passes in the ring as shown in Fig. 3. When the same 

token is back it can enter the CS. 



Jijnasa Patil et al Int. Journal of Engineering Research and Applications                      www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6( Version 6), July 2014, pp.72-77 

 www.ijera.com                                                                                                                                76 | P a g e  

 
Fig. 3 Multiple Tokens Algorithm 

 

Token structure is shown below: 

TOKEN { 

TokenID; //includes address of a node 

ResourceID; //resource for which the 

request ismade 

Resend; //0 for initial token, 1 for 

retransmitted tokens 

}; 

 

Where, 

TokenID = (SeqNum, PID) 

SeqNum = locally assigned unique sequence number  

PID = process identifier 

HighestSeqNumSeen = stored by each process 

Ti
r 
= token generated by node i for resource r 

Queue for each resource  

The algorithm [4] works in four steps: 

Step-1: A node Ni wants to enter the critical section, 

CS(r) 

 It Generates a token, Ti
r
  

 And passes it to the next node  

Step-2: Any node Nj receives a token for CS(r)  

1. If Nj has no intention to enter the CS(r),  

 It replaces the sequence number by 

HighestSeqNumSeen  

 passes the token to the next node. 

2. If Nj is now in the CS(r),  

 it puts the incoming token in  Qi
r
 .  

 When Nj exits the CS, it releases the 

tokens to the next node sequentially (if 

any) from  Qi
r
  

3.  If Nj has already generated a token but not 

yet received that back it compares the 

incoming token’s priority with it’s generated 

token’s priority. If  Pri(Ti
r
)<Pri(T

r
), it passes 

the token to the next node; otherwise it puts 

the token in r .  

Step-3: 

 If the node Ni receives its own generated 

tokenTi
r
,  

 i.e. all other nodes allowed Ti
r
 to enter the 

CS(r), and then it enters the CS.  

 On exiting from the CS(r) it sends the 

queued tokens to the next node sequentially 

(if any) and deletes the associated copy and 

original token.  

Step-4: 

 If node Ni does not receive its own generated 

token, Ti
r
, within a certain timeout period 

(because, either token is lost or held by some 

other died node),  

 Ni retransmits the token with the initial 

priority identifier and Resend field value of 

1.  

 Upon reception of a token, if its Resend field 

is found to be 1, a simple query in the 

request queues is executed to find that token.  

 If it is not found, the token is added in the 

request queue; otherwise it is simply 

discarded.  

 Takes care of lost tokens 

It is very easy to see that the message complexity 

of this algorithm is N-1. 

 

IV. ANALYSIS 
Comparison of different mutual exclusion 

algorithms in distributed systems is given below in 

TABLE I, where N denotes number of nodes in the 

system and q denotes number of nodes in the quorum.  

 

TABLE 1: Comparison of token ring algorithm, info-

based token asking algorithms and multiple token 

algorithm 

Algorithm Heavy Load Light Load 

Token Ring 1 O(N) 

Information 

based Token 

Passing 

2 4 𝑁+1 

Multiple token 

Algorithm 
N-1 N-1 

Ricart-

Agrawala 
2(N-1) 2(N-1) 

Maekawa 5( 𝑁-1) 5( 𝑁-1) 

Surrogate 

Quorum Based 
O(q) O(q) 

 

V. CONCLUSION 
This paper analyzes different algorithms for 

achieving mutual exclusion in distributed systems. 

The types algorithms are broadly categorized as 

permission based and token based. Quorum based 

mutual exclusion is a special case of permission 

based. And for token based we have described token 

asking and multiple token algorithms. The comparison 

of these algorithms is presented. The future scope of 

this paper is to design a new hybrid algorithm 

combining the benefits of both permission and token 

based mutual exclusion techniques.  

 

REFERENCES 
[1] Andrew S.Tanenbaum, Maarten Van Steen, 

“DISTRIBUTED SYSTEMS, Principals and 

Paradigms”, Pearson Prentice Hall Pearson 



Jijnasa Patil et al Int. Journal of Engineering Research and Applications                      www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6( Version 6), July 2014, pp.72-77 

 www.ijera.com                                                                                                                                77 | P a g e  

Education, Inc. Upper Saddle River, NJ 

07458  

[2] Ranganath Atreya, Neeraj Mittal, Member, 

IEEE Computer Society, and Sathya Peri, “A 

Quorum-Based Group Mutual Exclusion 

Algorithm for a Distributed System with 

Dynamic Group Set”, IEEE 

TRANSACTIONS ON PARALLEL AND 

DISTRIBUTED SYSTEMS, VOL. 18, NO. 

10, OCTOBER 2007 

[3] Peyman Neamatollahi, Hoda Taheri, 

Mahmoud Naghibzadeh, “A Distributed 

Token-based Scheme to Allocate Critical 

Resources”, IEEE 2011  

[4] Md. Abdur Razzaque, Choong Seon Hong, 

“Multi-Token Distributed Mutual Exclusion 

Algorithm”, 22nd International Conference 

on Advanced Information Networking and 

Applications 

[5] Samad Paydar, Mahmoud Naghibzadeh, 

Abolfazl Yavari, “A Hybrid Distributed 

Mutual Exclusion Algorithm”, IEEE—ICET 

2006. 

[6] MAMORU MAEKAWA, “A  𝑁 Algorithm 

for Mutual Exclusion in Decentralized 

Systems”, ACM Transactions on Computer 

Systems, Vol. 3, No. 2, May 1985  

[7] Glenn Ricart, Ashok K. Agrawala,” An 

Optimal Algorithm for Mutual Exclusion in 

Computer Networks”, Communications of 

the ACM, January 1981, Volume 24, No.1. 


